
Communications to the Editor 7065 

preferred for the spirometallooxaziridine. 
Reaction of either 3 or the corresponding dioxo complex with 

either A'-methylhydroxylamine or benzohydroxamic acid so 
far has not yielded pure metallooxaziridine complexes.13 

The metallooxaziridines do behave as "nitrenoids". This is 
suggested by thermal decomposition of 4 to azobenzene and 
by the formation of a mixture of 2-(A/-phenyl)iminocyclo-
hexanone and azobenzene when 4 is treated with cyclohexa-
none in chlorobenzene at 80 0 C. The scope and mechanism of 
the reaction of metallooxaziridines of the type 4 containing 
ligands more labile than HMPT or spirometallooxaziridine 
9 with ketones, esters, and nitriles is under investigation and 
will be reported in the future. 
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Amino-Substituted Sulfonium Salts. 
Synthesis and Stereochemistry 

Sir: 

Amino-substituted sulfonium cations, [(R2N)XSF3_X] + (x 
= 1,2, 3), are isoelectronic with aminophosphines and, con
sequently, their stereochemistry, reactivity, and ligand be
havior are of significant potential interest.1 

We find that the syntheses of the [Me2NSF2]+ (1) and 
[(Me2N)2SF]+ (2) cations can be accomplished in high yields 
by treatment of the appropriate fluorosulfurane with a fluoride 
ion acceptor such as BF3, PF5, or AsF5 in SO2 solutions at —60 
t o - 6 5 0C: 

( M e 2 N ) x S F 4 - , + MF„ 

SO2 

- H - [ ( M e 2 N ) x S F 3 - J + [ M F n + 1 ] - (1) 

This is a similar approach to that used2 for the synthesis of 
[SF3]+ [BF 4 ] - . However, since the fluorosulfurane, (Me2-
N)3SF, is unknown it was necessary to develop a novel syn
thesis for the completely amino-substituted cation, [(Me2-
N) 3 S] + (3). After several unsuccessful attempts to prepare the 
latter by treating 1 or 2 with dimethylamide anion, we dis
covered that the reaction of SF4 with B(NMe2)3 affords high 
yields of 3 as its tetrafluoroborate salt: 

SF4 -I- (Me2N)3B -» [(Me2N)3S] + [BF 4 ] - (2) 

Typically, an equimolar mixture of SF4 and (Me2N)3B in SO2 

solution is allowed to warm slowly from —196 to +10 0 C. 
Removal of the SO2 and trace quantities of volatiles in vacuo 
produces white, solid [(Me2N)3S] + [BF4]- , mp 110 0 C dec.3 

The reaction of SF4 and (Me2N)3B can be followed by NMR 
spectroscopy. Immediately after warming to —60 0C, 1H peaks 
corresponding to 1 (triplet,4 5 3.18, JFSNCH = 7.5 Hz), 2 
(doublet, 5 2.95, JFSNCH = 7.0 Hz), and 3 (singlet, 0 2.55) and 
(Me2N)3B are clearly discernible. The resonances corre
sponding to 1, 2, and (Me2N)3B decrease with time and that 
of 3 increases until, after 20 min at ambient temperature, all 
that remains is the singlet resonance of 3. 19F spectra5 taken 
in the early stages of the reaction confirm the presence OfSF3

+ 

(singlet, —19 ppm), 1 (septet, —16.0 ppm, JFSNCH = 7.5 Hz), 
and 2 (multiplet, +15.6 ppm, /FSNCH = 7.0 Hz) and, in ad
dition, exhibit four poorly resolved "quartet" resonances which 
we attribute to BF 4

- (143.5 ppm, J u B F = 2 Hz), [Me 2NBF 3] -

(153ppm,J i i B F = 20Hz), [(Me2N)2BF2]" (155 ppm, J n B F 

= 18 Hz), and [(Me2N)3BF]-(156 ppm, J n 8 F = 17 Hz).6 As 
time elapses the resonance due to B F 4

- grows at the expense 
of the other three. To accommodate the foregoing observations 
we postulate that the initial step in the reaction is F - ab
straction by (Me2N)3B to form [(Me2N)3BF]" and SF 3

+ , the 
latter undergoing F - / M e 2 N " exchange with either (Me2N)3B 
or [(Me 2N) xBF 4-*] - . In support of this postulate we find that 
(a) the AsFg - salts of SF 3

+ , 1, and 2 undergo rapid reaction 
with (Me2N)3B to afford 3, and (b) the sulfurane (Me2N)2SF2 

does not react with (Me2N)3B in this temperature range. 

The stereochemistry of aminosulfonium cations has been 
investigated by dynamic NMR spectroscopy. For example, 
below —30 0 C the 1H spectrum of 1 consists of two overlapping 
triplets which we attribute to two Me environments (Me3, <5 
3.06, JFSNCH, = 9.5 Hz; Meb, 6 2.98, JFSNCHb = 5.5 Hz).7 

This deduction is confirmed by the presence of two singlets in 
the 13C spectrum (Me3, 41.2, and Meb, 36.7 ppm).5 '7 Under 
the same conditions the 19F spectrum comprises a 16-line 
spectrum which is due to the coupling of the two Me groups 
to two equivalent F ligands. Taken collectively, the low-tem
perature NMR data establish structure 4 for 1, and thereby 
demonstrate that aminosulfonium cations and aminophos
phines are isosteric.8 Upon warming to —15 0 C the 1H spec-
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Figure 1. Experimental (left) and computer-simulated 1H NMR spectra 
of [Me2NSF2]+ (1). The experimental spectra were obtained in SO2 so
lution. 

trum collapses and emerges as a triplet, while the 13C and 19F 
spectra become a singlet (39.3 ppm) and a septet (-16.0 ppm, 
•/HCNSF = 7.5 Hz), respectively. These spectral changes are 
attributed to rotation around the N - S bond becoming rapid 
on the NMR time scale. Computer line-shape analyses of the 
'H dynamic NMR spectra indicate that the barrier to N - S 
rotation in 1 is 14.7 kcal/mol. This result implies that the N - S 
torsional barriers in aminosulfonium cations are significantly 
larger than the N - P barriers of the corresponding amino-
phosphines.9 Thus, aminosulfonium salts might find use as 
models for aminophosphine stereochemistry in cases where, 
because of low N-P torsional barriers, considerable doubt 
persists regarding the ground-state geometry. 
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The coordination chemistry of aminosulfonium cations is 
under active investigation and will be reported in subsequent 
publications. 
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Solvolysis of Cyclooctatetraenyl 
Trifluoromethanesulfonate' 

Sir: 

Cyclic vinyl trifluoromethanesulfonates (triflates) and 
nonafluoro-w-butanesulfonates (nonaflates) solvolyze in 
suitable solvents2 with formation of cyclic vinyl cations. The 
rate of solvolysis of the reaction, and with that the tendency 
of the cyclic vinyl cations to exist as intermediates, depends on 
the size of the ring. With the exception of 1-cyclobutenyl 
nonaflate, which stands out in the cyclic series because of its 
high solvolysis rate,3 a steady rise in the rate of solvolysis going 
from the slowly reacting 1-cyclohexenyl triflate up to the 1-
cyclononenyl triflate was observed owing to the increasingly 
easy formation of a stable linear vinyl cation.2 

Additional stabilization of cyclic vinyl cations can be 
achieved by conjugated double bonds in the ring system, when 
the size of the ring allows orthogonality of the double bonds 
for a good overlap of the vacant p orbital of the vinyl cation 
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